Search results

1 – 2 of 2
Article
Publication date: 15 June 2015

Shunying Ji, Shaocheng Di and Shewen Liu

In oil/gas exploitations of ice-covered cold regions, conical offshore structures are designed to reduce ice force and to avoid the ice-induced intense vibrations of vertical…

Abstract

Purpose

In oil/gas exploitations of ice-covered cold regions, conical offshore structures are designed to reduce ice force and to avoid the ice-induced intense vibrations of vertical structures. The purpose of this paper is to investigate the interaction between ice cover and conical offshore structures, the discrete element method (DEM) is introduced to determine the dynamic ice loads under different structure parameters and ice conditions.

Design/methodology/approach

The ice cover is dispersed into a series of bonded spherical elements with the parallel bonding model. The interaction between ice cover and conical offshore structure is obtained based on the DEM simulation. The influence of ice velocity on ice load is compared well with the experimental data of Hamburg Ship Model Basin. Moreover, the ice load on a conical platform in the Bohai Sea is also simulated. The ice loads on its upward and downward ice-breaking cones are compared.

Findings

The DEM can be used well to simulate the ice loads on conical structures. The influences of ice velocity, ice thickness, conical angle on ice loads can be analyzed with DEM simulations.

Originality/value

This DEM can also be applied to simulate ice loads of different offshore structures and aid in determining ice load in offshore structure designs.

Details

Engineering Computations, vol. 32 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 1993

R.J. GU and H.C. WANG

A novel numerical technique is presented with which the temperature profile within a selected transverse plane of an object can be reconstructed provided the boundary data around…

Abstract

A novel numerical technique is presented with which the temperature profile within a selected transverse plane of an object can be reconstructed provided the boundary data around the transverse plane are known. Numerical simulations of the proposed computed tomography technique are performed to verify its feasibility and accuracy using several heat conduction examples whose exact solutions can be found in literature. Restrictions of and mathematical difficulties encountered in the proposed technique are presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 2 of 2